Abstract
In this work, inductively coupled plasma emission spectroscopy was utilized to directly determine the chemical composition of magnetic fluids constituted of size-sorted ferrite nanoparticles in aqueous solution. Nickel and cobalt nanoferrites were chemically synthesized following a bottom-up route and dispersed under various pH conditions. Size and structural characteristics of nanograins were investigated by X-ray diffraction using a synchrotron source. Chemical analysis was then carried out by directly introducing diluted magnetic fluid samples (slurries) into the spectrometer. To achieve reliable measurements, sample conditions and apparatus parameters were carefully investigated. Slurry stability must be optimized in order to obtain reproducible and accurate analysis. The instrument must also be calibrated to minimize the difference between the signal produced by slurries and that of aqueous ordinary solutions. Furthermore, slurry sample introduction offers many advantages over conventional sample digestion, including reduced sample pretreatment time, less possibility of contamination and the use of direct calibration with aqueous solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.