Abstract
CP-MS41 was synthesized by hydrolysis of tetraorthosilicate, as a silicon source, with 3-chloropropyltriethoxysilane as an organosilane using cetyltrimethylammonium bromide as a template. ID-CP-MS41 was synthesized by immobilization of imidazole on the CP-MS41 and was dispersed in organic liquid as a mesoporous catalyst for the reaction between carbon dioxide and oxirane. Phenyl glycidyl ether and glycidyl methacrylate were used as oxiranes. Carbon dioxide was absorbed into the oxirane solution in a stirred batch tank with a planar gas-liquid interface within a range of 0–2.0 kmol/m3 of oxirane and 333–363 K at 101.3 kPa. The measured values of absorption rate were analyzed to obtain the reaction kinetics using the mass transfer mechanism associated with the chemical reactions based on the film theory. The overall reaction of CO2 with oxirane, which is assumed to consist of two steps-i) a reversible reaction between oxirane (B) and catalyst of ID-CP-MS41 (QX) to form an intermediate complex (C1), and ii) irreversible reaction between C1 and CO2 to form QX and five-membered cyclic carbonate (C)-was used to obtain the reaction kinetics through the pseudo-first-order reaction model. Polar solvents such as N, N-dimethylacetamide, Nmethyl-2-pyrrolidinone, and dimethyl sulfoxide affected the reaction rate constants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.