Abstract
In many scientific fields, there is an interest in understanding the way in which chemical networks evolve. The chemical networks which researchers focus upon have become increasingly complex, and this has motivated the development of automated methods for exploring chemical reactivity or conformational change in a "black-box" manner, harnessing modern computing resources to automate mechanism discovery. In this work, we present a new approach to automated mechanism generation which couples molecular dynamics and statistical rate theory to automatically find kinetically important reactions and then solve the time evolution of the species in the evolving network. The key to this chemical network mapping through combined dynamics and ME simulation approach is the concept of "kinetic convergence", whereby the search for new reactions is constrained to those species which are kinetically favorable at the conditions of interest. We demonstrate the capability of the new approach for two systems, a well-studied combustion system and a multiple oxygen addition system relevant to atmospheric aerosol formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.