Abstract

BackgroundRheumatoid arthritis (RA) is a long-term, progressive, and disabling autoimmune disease. It causes inflammation, swelling and pain in and around the joints and other body organs. Currently, no cure is available for RA. Clinical interventions can only relieve the condition, and at least 30% of RA patients do not respond to first‑line therapy. This means that the development of more effective therapies against RA is urgently needed. ObjectiveThis study aimed to assess the anti-rheumatoid arthritis effect of chelerythrine (CLT) and explore its mechanism of action. MethodsThe cytotoxic effect of CLT on human rheumatoid arthritis fibroblast-like synoviocyte (HFLS-RA) cells and HFLS-normal cells were measured by MTT assay. The growth and migration of HFLS-RA cells were determined by colony-formation and wound-healing assay. The level of intracellular reactive oxygen species (ROS) was detected using the DCFH-DA reagent. Cell apoptosis was measured by flow cytometry, TUNEL staining, caspase 3 activity, as well as the activation of apoptosis related proteins. In addition, the levels of autophagy related markers such as LC3B and P62 were determined by immunocytochemistry and western blotting. Lastly, the anti-RA effect of CLT was evaluated in an Adjuvant-Induced Arthritis(AIA) rat model and the severity of arthritis was detected and quantified using macroscopic inspection and X‑ray imaging. ResultsWe discovered that treatment with CLT effectively inhibited the migration and colony-formation of the HFLS-RA cells and resulted in cell death. Moreover, CLT increased the intracellular level of ROS and the apoptotic rate of HFLS-RA by activating the AMPK/mTOR/ULK-1 signaling pathways. In vivo study showed CLT effectively ameliorated AIA in rats, protecting them from inflammation and bone damage. ConclusionOur study shows CLT is an effective agent for ameliorating RA in vitro and in vivo by modulation of the AMPK/mTOR/ULK-1 signaling pathway. These findings indicate that CLT is a great potential candidate for development as a therapeutic agent for the prevention and treatment of RA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.