Abstract
In this paper we explore the relative performance of two recently developed wave packet methodologies for reactive scattering, namely the real wave packet Chebyshev domain propagation of Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)] and the Lanczos subspace wave packet approach of Smith et al. [J. Chem. Phys. 116, 2354 (2002); Chem. Phys. Lett. 336, 149 (2001)]. In the former method, a modified Schrödinger equation is employed to propagate the real part of the wave packet via the well-known Chebyshev iteration. While the time-dependent wave packet from the modified Schrödinger equation is different from that obtained using the standard Schrödinger equation, time-to-energy Fourier transformation yields wave functions which differ only trivially by normalization. In the Lanczos subspace approach the linear system of equations defining the action of the Green operator may be solved via either time-dependent or time-independent methods, both of which are extremely efficient due to the simple tridiagonal structure of the Hamiltonian in the Lanczos representation. The two different wave packet methods are applied to three dimensional reactive scattering of H+O2 (total J=0). State-to-state reaction probabilities, product state distributions, as well as initial-state-resolved cumulative reaction probabilities are examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.