Abstract

The Chebyshev polynomials are harnessed as functions of the one parameter of the nondimensionalized differential equation for trinomial homogeneous linear differential equations of arbitrary order n that have constant coefficients and exhibit vibration. The use of the Chebyshev polynomials allows calculation of the analytic solutions for arbitrary n in terms of the orthogonal Chebyshev polynomials to provide a more stable solution form and natural sensitivity analysis in terms of one parameter and the initial conditions in 6n + 7 arithmetic operations and one square root.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.