Abstract

Easy cutting vibration of Titanium alloy thin-walled structural components in processing process directly influences the quality of part machining surface. So, the chatter prediction has become a research hotspot. The milling process of Ti-6Al-4V framework parts for hard alloy cutter is researched and chatter prediction methods are proposed to solve the chatter problem generated in milling process. The signals in milling process are comprehensively considered to work out the stability boundary and the chatter prediction model based on Empirical Mode Decomposition (EMD) and Support Vector Machine (SVM). The stability lobe diagram is utilized to select experiment parameter for experiment, in which the 1/3-2/3 position of framework parts chatters easily in processing. The model training in experiment aims to monitor the time of chatter, with the recognition precision of 97.50%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.