Abstract

Squarylium-based π-electronic cation with an augmented dipole was synthesized by methylation of zwitterionic squarylium. The cation formed various ion pairs in combination with anions, and the ion pairs exhibited distinct photophysical properties in the dispersed state, ascribed to the formation of J- and H-aggregates. The ion pairs provided solid-state assemblies based on cation stacking. It is noteworthy that complete segregation of cations and anions was observed in a pseudo-polymorph of the ion pair with pentacyanocyclopentadienide as a π-electronic anion. In the crystalline state, the ion pairs exhibited photophysical properties and electric conductivity derived from cation stacking. In particular, the charge-segregated ion-pairing assembly induces an electric conductive pathway along the stacking axis. The charge-segregated mode and fascinating properties were derived from the reduced electrostatic repulsion between adjacent π-electronic cations via dipole-dipole interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.