Abstract

The molecular recognition of peptides and proteins in aqueous solution by designed molecules remains an elusive goal with broad implications for basic biochemical research and for sensors and separations technologies. This paper describes the recognition of N-terminal tryptophan in aqueous solution by the synthetic host cucurbit[8]uril (Q8). Q8 is known to form 1:1:1 heteroternary complexes with methyl viologen (MV) and a second aromatic guest. Here, the complexes of Q8.MV with (i) the four natural aromatic alpha-amino acids, (ii) four singly charged tryptophan derivatives, and (iii) four tryptophan-containing tripeptides were characterized by isothermal titration calorimetry, mass spectrometry, and UV-visible, fluorescence, and (1)H NMR spectroscopy. We find that Q8.MV binds Trp-Gly-Gly with high affinity (K(a) = 1.3 x 10(5) M(-1)), with 6-fold specificity over Gly-Trp-Gly, and with 40-fold specificity over Gly-Gly-Trp. Analysis of the nine indole-containing compounds suggests that peptide recognition is mediated by the electrostatic charge(s) proximal to the indole, and that the mode of binding is consistent for these compounds. Complex formation is accompanied by the growth of a visible charge-transfer band and the quenching of indole fluorescence. These optical properties, combined with the stability and selectivity of this system, are promising for applications in sensing and separating specific peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.