Abstract

The long-standing problem of the oxygen self-diffusion mechanism in silicon dioxide, a prototypical oxide, both in the crystalline and in the amorphous phase, is studied from first principles. We demonstrate that the widely used local-density approximation to density functional theory (DFT) predicts a kinetic behavior of oxygen in strong disagreement with available experiments. Applying a recently developed scheme that combines DFT with quasiparticle energy calculations in the G0W0 approximation considerably improves defect energetics and gives gratifying agreement with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.