Abstract

We theoretically study the role of the Berry curvature on neutral and charged excitons in two-dimensional transition-metal dichalcogenides. The Berry curvature arises due to a strong coupling between the conduction and valence bands in these materials that can to great extent be described within the model of massive Dirac fermions. The Berry curvature lifts the degeneracy of exciton states with opposite angular momentum. Using an electronic interaction that accounts for non-local screening effects, we find a Berry-curvature induced splitting of $\sim 17$ meV between the 2$p_{-}$ and 2$p_{+}$ exciton states in WS$_2$, consistent with experimental findings. Furthermore, we calculate the trion binding energies in WS$_2$ and WSe$_2$ for a large variety of screening lenghts and different dielectric constants for the environment. Our approach indicates the prominent role played by the Berry curvature along with non-local electronic interactions in the understanding of the energy spectra of neutral and charged excitons in transition-metal dichalcogenides and in the the interpretation of their optical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.