Abstract
This paper describes charge trapping, detrapping and memory cycling and retention in ultra-thin oxide-nitride-oxide (ONO) structures in submicron FET devices with polysilicon gates, also known as silicon-oxide-nitride-oxide-silicon (SONOS) structures. The ONO films had various thicknesses (4.9–9.0 nm) and their top oxide was obtained either by reoxidation of nitride or by in situ deposition of oxide by chemical-vapor-deposition (CVD). Memory characteristics are found to be critically dependent on details of processing and film thicknesses. The reoxidized ONO films show larger threshold shifts than the CVD films. A surprising result is that the “write” threshold shift could be “erased” only in one of the reoxidized structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.