Abstract

ABSTRACTAir-mediated molecular ordering in self-organized polymer semiconductors of regioregular poly(3-hexylthiophene) (P3HT) and poly[(9,9′-dioctylfluorenyl-2,7-diyl)-(2,2′-bithiophene-5,5′-diyl)] (F8T2) was investigated using organic field-effect transistors (OFETs) fabricated by transfer-printing using poly(dimethylsiloxane) stamps with various surface energies. OFET measurements revealed that the charge transport in the polymer semiconductors via the air interface layer was better than that via the substrate interface layer. The results indicated that the formation of a highly ordered microstructure at the polymer/air interface through air-mediated self-organization occurs in many polymer semiconductors. This air-mediated self-organization was weaker than substrate-mediated self-organization, whose influence appeared in OFETs with thin semiconductor films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.