Abstract

ABSTRACTWe report electrochemical characteristics of hydrogen terminated charge-transfer doped intrinsic microcrystalline diamond films. Microcrystalline diamond was synthesized by Direct- Current Plasma Enhanced Chemical Vapor Deposition (DC-PECVD) in methane diluted by hydrogen. The diamond films were subjected to further treatment by microwave plasma in pure hydrogen to increase the hydrogen termination of the diamond surfaces and their negative electron affinity. When the diamond is exposed to the ambient moisture, valance electrons tend to tunnel from the first few atomic layers of the diamond surface to the adsorbed water adlayer. This charge transfer process results in the surface of hydrogen-terminated diamond behaving like a p-type semiconductor.Electrochemical characteristics of hydrogen-terminated diamond films were exposed to an air plasma for depleting the surface hydrogen atoms and then re-hydrogenated the same diamond films with atomic hydrogen. Cyclic voltammetry in 0.1M H2S04 aqueous solution and 0.01M Fe(CN)6-4/-3+0.1M KCl aqueous solution was applied to reveal high current density and wide potential window for hydrogen-terminated diamond grown on silicon substrates. The faceted surface morphology has been observed by SEM. The crystalline characteristics and carbon phases in the diamond film were examined by Raman spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.