Abstract

AbstractThe magnitude of the dipole moment at the Si-SiO2 interface resulting from partial charge transfer that takes place upon the formation of interface bonds has been calculated. The charge transfer occurs because of the difference in electronegativity between silicon atoms and SiO2 molecules which are present across the interface. Results obtained for (100) and (111) silicon substrates indicate that the magnitude of the interface dipole moment is dependent on substrate orientation and the interface chemistry. Dipole moments at the Si-SiO2 and gate-SiO2 interfaces should be included in the definition of the flatband voltage VFB of MOS structures. CV-based measurements of the metal-semiconductor workfunction difference φms on (100) and (111) silicon oxidized in dry oxygen and metallized with Al agree with the predictions of this model. Other types of interface dipoles and their processing dependence are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.