Abstract

We report collection of precise photoluminescence maps (emission intensity versus energy and magnetic field) of superior-quality two-dimensional hole gases. The maps reveal field evolution of both direct and cyclotron-assisted recombination lines attributed to various excitonic complexes, either moving nearly freely in the plane or bound to the acceptors placed inside or outside the quantum well. Under two-beam illumination (with photon energies below and above the band-gap in the barrier) we were able to control hole concentration (in the same well), and in particular to decrease it beyond the point of p- to n-type conversion. Our results demonstrate contrast between charge conversion of free and acceptor-bound positive trions resulting from the breaking of charge reflection symmetry by a fixed impurity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.