Abstract

Seeking and developing a new approach to energy conversion is of significance to the development of future society. Hydrogen energy is expected to become an ideal green energy. In this work, g-C3N4 nanocomposites were modified with non-noble metal-sulfide CoS2 as a co-catalyst for hydrogen evolution, and the charge behavior in a photocatalytic process was studied by optical characterization and photo electrochemical test technology. The experiments proved that the composite material showed a superior hydrogen production performance when the CoS2 load was 5[Formula: see text]wt.% and the optimal hydrogen production activity was 119.7[Formula: see text][Formula: see text]mol[Formula: see text]g[Formula: see text]. CoS2 as the reactivity site improved the migration and separation of the photo-generated charge significantly, the transfer resistance of the photogenerated charge decreased visibly after the CoS2 loading, the photocurrent increased three times and the effective carrier lifetime on the catalyst conduction band increased ten times. The photocatalysts maintained a good stability in a 12[Formula: see text]h hydrogen production activity test and a one hour photocurrent test. This work provides guidance for the design of an efficient catalyst and the study of effective charge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.