Abstract

For solar thermal energy utilization in relatively low temperatures, a lab-scale direct contact, latent thermal energy storage unit using a form-stable high-density polyethylene (HDPE) was developed. The phase change material (PCM), the form-stable HDPE, does not fluidize nor adhere even after melting, and this particular property permits a direct contact heat transfer between the PCM and a heat transfer fluid (HTF). The storage column in the present study consists of a bundle of vertically arranged thin HDPE rods, where HTF flows in the axial direction and contacts with the HDPE surface directly. A series of experiments were performed for both charge and discharge modes under conditions of different flow rates, initial temperatures in the column, and HTF inlet temperatures. A numerical simulation was also made to study further detailed performance of the storage unit. The charge and discharge characteristics of the storage unit are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.