Abstract

ObjectiveDespite a long history of ECG-based monitoring of acute ischemia quantified by several widely used clinical markers, the diagnostic performance of these metrics is not yet satisfactory, motivating a data-driven approach to leverage underutilized information in the electrograms. This study introduces a novel metric for acute ischemia, created using a machine learning technique known as Laplacian eigenmaps (LE), and compares the diagnostic and temporal performance of the LE metric against traditional metrics. MethodsThe LE technique uses dimensionality reduction of simultaneously recorded time signals to map them into an abstract space in a manner that highlights the underlying signal behavior. To evaluate the performance of an electrogram-based LE metric compared to current standard approaches, we induced episodes of transient, acute ischemia in large animals and captured the electrocardiographic response using up to 600 electrodes within the intramural and epicardial domains. ResultsThe LE metric generally detected ischemia earlier than all other approaches and with greater accuracy. Unlike other metrics derived from specific features of parts of the signals, the LE approach uses the entire signal and provides a data-driven strategy to identify features that reflect ischemia. ConclusionThe superior performance of the LE metric suggests there are underutilized features of electrograms that can be leveraged to detect the presence of acute myocardial ischemia earlier and more robustly than current methods. SignificanceThe earlier detection capabilities of the LE metric on the epicardial surface provide compelling motivation to apply the same approach to ECGs recorded from the body surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.