Abstract

Abstract GQ Lup B is a young and accreting, substellar companion that appears to drive a spiral arm in the circumstellar disk of its host star. We report high-contrast imaging observations of GQ Lup B with VLT/NACO at 4–5 μm and medium-resolution integral field spectroscopy with VLT/MUSE. The optical spectrum is consistent with an M9 spectral type, shows characteristics of a low-gravity atmosphere, and exhibits strong Hα emission. The H − M′ color is ≳1 mag redder than field dwarfs with similar spectral types, and a detailed analysis of the spectral energy distribution (SED) from optical to mid-infrared wavelengths reveals excess emission in the L′, NB4.05, and M′ bands. The excess flux is well described by a blackbody component with T disk ≈ 460 K and R disk ≈ 65 R J and is expected to trace continuum emission from small grains in a protolunar disk. We derive an extinction of A V ≈ 2.3 mag from the broadband SED with a suspected origin in the vicinity of the companion. We also combine 15 yr of astrometric measurements and constrain the mutual inclination with the circumstellar disk to 84 ± 9 deg, indicating a tumultuous dynamical evolution or a stellar-like formation pathway. From the measured Hα flux and the estimated companion mass, M p ≈ 30 M J, we derive an accretion rate of M ̇ ≈ 10 − 6.5 M J yr − 1 . We speculate that the disk is in a transitional stage in which the assembly of satellites from a pebble reservoir has opened a central cavity while GQ Lup B is in the final stages of its formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.