Abstract

Background The function of brain networks is highly dependent on the dynamical properties of single neurons, whose activity ranges from complex spontaneous activity patterns such as oscillations and bursting, to a variety of synaptic response patterns serving functions such as coincidence detection or rebound firing. These dynamical properties vary in time through modulation and plasticity, and are also heterogeneous across individual neurons of the same type. Commonly, neurons show two to five-fold variability in the density of voltage-gated conductances, which accounts for large variations in dynamical behavior.

Highlights

  • The function of brain networks is highly dependent on the dynamical properties of single neurons, whose activity ranges from complex spontaneous activity patterns such as oscillations and bursting, to a variety of synaptic response patterns serving functions such as coincidence detection or rebound firing

  • Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 William R Holmes Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here http://www.biomedcentral.com/content/pdf/1471-2202-8-S2-info.pdf

  • We study the composition of intrinsic properties that yields the electrophysiology recorded from rat globus pallidus (GP) neurons in slice

Read more

Summary

Open Access

Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 William R Holmes Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here http://www.biomedcentral.com/content/pdf/1471-2202-8-S2-info.pdf

Background
Methods
Results and conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.