Abstract
The aim of the present work was to use a battery of lectins to 1) delineate the carbohydrate content of sperm glycocalyx in the turkey and chicken using flow cytometry analysis, and 2) evaluate the distribution of existing sugars over the sperm plasma membrane surface with epifluorescent microscopy. Carbohydrate groups (corresponding lectins) that were investigated included galactose (GS-I, Jacalin, RCA-I, PNA), glucose and/or mannose (Con A, PSA, GNA), N-acetyl-glucosamine (GS-II, s-WGA, STA), N-acetyl-galactosamine (SBA, WFA), fucose (Lotus, UEA-I), sialic acid (LFA, LPA), and N-acetyl-lactosamine (ECA). Spermatozoa were assessed before and after treatment with neuraminidase to remove sialic acid. Mean fluorescence intensity (MnFI) was used as indicator of lectin binding for flow cytometry analysis. Nontreated spermatozoa from both species showed high MnFI when incubated with RCA-I, Con A, LFA, and LPA, as did chicken spermatozoa incubated with s-WGA. Neuraminidase treatment increased the MnFI for most lectins except LFA and LPA, as expected. Differences in MnFI between species included higher values for s-WGA and ECA in chicken spermatozoa and for WFA in turkey spermatozoa. Microscopy revealed segregation of some sugar residues into membrane-specific domains; however, the 2 staining techniques (cell suspension vs fixed preparation) differed in identifying lectin binding patterns, with fixed preparations yielding a high degree of nonspecific binding. We conclude that 1) the glycocalyx of turkey and chicken spermatozoa contains a diversity of carbohydrate groups, 2) these residues are extensively masked by sialic acid, 3) the glycocalyx composition is species-specific, and 4) some glycoconjugates appear to be segregated into membrane-specific domains. Characterization of the poultry sperm glycocalyx is the first step in identifying the physiological impact of semen storage on sperm function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.