Abstract

ABSTRACTAlluvial soils constitute significant portion of cultivated land in India and it contributes towards food grain production predominantly. The objectives of this study were to assess the spatial variability of soil pH, organic carbon (OC), available (mineralizable) nitrogen (N), available phosphorus (P), available potassium (K) and available zinc (Zn) of alluvial floodplain soils of Kadwa block, Katihar district, Bihar, India. A total of 85 soil samples, representative of the plough layer (0–25 cm depth from surface) were randomly collected from the study area. The values of soil pH, OC, N, P, K and Zn varied from4.4 to 8.4, 0.20% to 1.20%, 141 to 474, 2.2 to 68.2, 107 to 903 kg ha–1 and 0.22 to 1.10 mg kg–1, respectively. The coefficient of variation value was highest for available P (94.3%) and lowest for soil pH (11.3%). Spherical model was found to be the best fit for N, P and Zn contents, while exponential model was the best fit for OC, and Gaussian model was the best-fit model for pH and K. The nugget/sill ratio indicates that except pH and available K all other soil properties were moderately spatially dependent (25–57%). Soil properties exhibited different distribution pattern. It was observed that the use of geostatistical method could accurately generate the spatial variability maps of soil nutrients in alluvial soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.