Abstract
In this paper we study multivariate polynomial functions in complex variables and their corresponding symmetric tensor representations. The focus is to find conditions under which such complex polynomials always take real values. We introduce the notion of symmetric conjugate forms and general conjugate forms, characterize the conditions for such complex polynomials to be real valued, and present their corresponding tensor representations. New notions of eigenvalues/eigenvectors for complex tensors are introduced, extending similar properties from the Hermitian matrices. Moreover, we study a property of the symmetric tensors, namely, the largest eigenvalue (in the absolute value sense) of a real symmetric tensor is equal to its largest singular value; the result is also known as Banach's theorem. We show that a similar result holds for the complex case as well. Finally, we discuss some applications of the new notion of eigenvalues/eigenvectors for the complex tensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.