Abstract

Male fertility in farm animals is considered as an important economic trait. The phenomenon of spermatogenesis plays a dynamic functional role in determining the viability of sperm and thereby can impact on fertility-driven complications. The process of spermatogenesis is controlled by numerous molecular factors and requires a precisely regulated pattern of gene expression. The role of small noncoding RNAs in altering gene expression has been extensively studied. However, limited information is available apropos their role in yak spermatogenesis. The present study aimed to evaluate the assessment of some significant microRNAs and their expression pattern in the body tissues and sperm of fertile and subfertile yak from Arunachal Pradesh besides identified a novel class of sperm enriched small RNA 'mature-sperm-enriched small RNA' (mse-tsRNA) in Yak spermatozoa. The RNAwas extracted from tissue and sperm using 27 gauge needles and subsequently reverse transcribed into small RNA cDNAs. The PCR positive sperm-predominant miRNAs were validated by quantitative reverse transcriptase PCR (qRT-PCR) for their expression in fertile and subfertile yak. Of the 22 microRNAs, the miRNA19a, miRNA142 and miRNA143 showed higher expression in the subfertile yak, whereas expression of miRNA7d, miRNA23a and miRNA23b were found elevated in the fertile animal. The presence of these small noncoding RNAs in yak sperm and testis indicated the legitimate involvement of their role in yak bull fertility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.