Abstract
By the Choquet theorem, distributions of random closed sets can be characterized by a certain class of set functions called capacity functionals. In this paper a generalization to the multivariate case is presented, that is, it is proved that the joint distribution of finitely many random sets can be characterized by a multivariate set function being completely alternating in each component, or alternatively, by a capacity functional defined on complements of cylindrical sets. For the special case of finite spaces a multivariate version of the Moebius inversion formula is derived. Furthermore, we use this result to formulate an existence theorem for set-valued stochastic processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.