Abstract
With improved gate calibrations reducing unitary errors, we achieve a benchmarked single-qubit gate fidelity of $0.9995\ifmmode\pm\else\textpm\fi{}0.0002$ with superconducting qubits in a circuit quantum electrodynamics system. We present a method for distinguishing between unitary and nonunitary errors in quantum gates by interleaving repetitions of a target gate within a randomized benchmarking sequence. The benchmarking fidelity decays quadratically with the number of interleaved gates for unitary errors but linearly for nonunitary errors, allowing us to separate systematic coherent errors from decoherent effects. With this protocol, we show that the fidelity of the gates is not limited by unitary errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.