Abstract

PurposeThe dynamic properties of retinal vessels including pulse wave propagation and pulsatility index provide new perspective in retinal hemodynamic analysis. In this study we utilize a high speed imaging system to capture these characteristics in the rat eye for the first time. MethodsRetinal video images of 9 Wistar-Kyoto (WKY) rats were captured at a rate of 250 frames per second for 10s with a 50° field of view using a high speed camera (Optronis, Kehl, Germany). Two recordings were taken from each rat at the same sites for repeatability analysis. The electrocardiogram (ECG) was measured simultaneously with retinal images. Arterial retinal pulse wave velocity (rPWV) and arterial/venous pulse amplitude were calculated from recorded images. Arterial measurements were repeated in another normotensive strain of the same age (Sprague–Dawley, n=4). ResultsThe average WKY rPWV was 11.4±6.1cm/s. The differences between repeated measures were not significant (−2.8±2.9cm/s, p=0.2). Sprague–Dawley animals had a similar rPWV (9.8±2.2cm/s, p=0.61). The average arterial and venous pulse amplitude was 7.1±1.5μm and 8.2±2.0μm respectively. There was a positive correlation between rPWV and heart rate in the WKY groups (r2=0.32). A positive correlation was also obtained between arterial and venous diameter and their pulse amplitude (r2=0.67 and r2=0.37 respectively). ConclusionrPWV was associated with heart rate. Higher pulsation amplitude was also correlated with larger vessel diameter. High speed imaging of retinal vessels in the rat eye provides an accurate and robust method to study dynamic characteristics of these vessels and their relationship with ocular and systemic abnormalities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.