Abstract

Many studies have been published on the use of TiO 2 as a photocatalyst, which decomposes various organic compounds under UV illumination by generating various radicals. The purpose of the present study was to evaluate the photocatalytic bactericidal effects of variously treated titanium surfaces on Escherichia coli K-12. The specimens were fabricated from grade 4 commercially pure titanium, 12 mm in diameter and 1 mm in thickness. Five different surfaces were prepared (MA: machined surface; AO: anodized at 300 V; NO: NaOH-treated; NW: NaOH- and water-treated; and HT: heat-treated). Surface analysis was performed using scanning electron microscopy, optical interferometer, and thin-film X-ray diffractometry. Photocatalytic activity of each group was confirmed by degradation of methylene blue (MB). The antibacterial activity was assessed by calculating the survival ratio in a drop of a culture of E. coli placed on the surface under UV illumination. Significant photocatalytic activity and bactericidal effects were observed on the titanium surfaces of AO and NW, regardless of the surface roughness ( P < 0.01). The group with anatase was the most susceptible to the photocatalytic effect, while the surface without anatase showed the least susceptibility. Based on this in vitro study, the crystallography of the oxide layer on its titanium surfaces is an important factor affecting the photocatalytic bactericidal activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.