Abstract

(2)H T(1) NMR relaxation was used to characterize the molecular motion of deuterated water ((2)H(2)O) in Aquivion E87-05, Nafion 117, and sulfonated-Radel proton-exchange membranes. The presence of bound water with solid character was confirmed by the dependence of the (2)H T(1) relaxation on the magnetic field of the spectrometer. By comparing the (2)H T(1) relaxation times of the different membranes that were equilibrated in varying humidities, the factors that influence the state of water in the membranes were identified. At low levels of hydration, the molecular motion of (2)H(2)O is affected by the acidity and mobility of the sulfonic acid groups to which the water molecules are coordinated. At higher levels of hydration, the molecular motion of (2)H(2)O is affected by the phase separation of the hydrophilic/hydrophobic domains and the size of the hydrophilic domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.