Abstract

The process of wafer-level bonding is being successfully used to form MEMS devices. Wafer level bonding may be realized by different methods such as thermo compression, transient liquid phase, anodic, glass frit, or polymer bonding. These methods have different requirements and the choice of wafer level bonding method is defined by the application type. Metal TCB has a wide variety of applications with materials of choice including Au, Cu and Al. 3D electrical connections are created by the use of Cu-Cu TCB; while CMOS MEMS devices may be realized by Al-Al TCB. In this study the wafer level bonding process of Cu-Cu and Al-Al TCB are characterized. The effects and significance of various bonding process parameters and surface treatment methods are reported on the final bond interfaces integrity and strength. Analysis methods include SAM, SEM, AFM, and four point bending test. Al-Al TCB samples were investigated on the interfacial adhesion energy and bond quality. IAE and bond quality were found to be positively correlated with bonding temperature. A bonding temperature of 500 °C or greater is necessary to obtain bond strengths of 8–10 J/m2. A positive relation between IAE and bonding temperature was observed for Cu-Cu TCB. IAE's of greater then 10 J/m2 were obtained on bonded samples that do not show a post bond residual seam on the bonding interface. An acid based pre treatment was shown to impact the surface properties of the initial metal surface hence affecting the IAE. Post bond annealing processes showed the most significant impact on the IAE of the Cu-Cu TCB system. To obtain comparable IAE values the Al-Al TCB method requires a higher bonding temperature. However the Cu-Cu TCB is sensitive to the initial metal surface condition and requires surface treatment processes prior to bonding to obtain high quality bonding results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.