Abstract

A gene encoding a putative UDP-glucose 4-epimerase (pGALE) in Pyrococcus horikoshii was cloned and expressed in Escherichia coli. The purified enzyme could reversibly catalyze both the synthesis of UDP-Gal and UDP-Glc but preferred the binding of UDP-Gal by approximately 10-fold. The optimum pH and temperature were 6.5 and 65°C. The enzyme acted effectively without the addition of nicotinamide adenine dinucleotide (NAD+), possibly due to the presence of tightly bound NAD+. In particular, pGALE could be coupled with trehalose synthase (TreT) from P. horikoshii to regenerate UDP-Gal from UDP. The possible byproduct of glycosyltransferase, UDP, was capable of being converted to UDP-Glc with trehalose by TreT, and UDP-Glc was simultaneously converted to UDP-Gal by pGALE. Conclusively, the results suggest that pGALE and TreT with trehalose is an effective one-pot two-enzyme system for the regeneration of UDP-Gal, a high-cost substrate of galactosyltransferase, to complete a sugar nucleotide cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.