Abstract
We have isolated and characterized two complete cDNA clones, Zfz8a and Zfz8b, which encode zebrafish Frizzled (Fz) homologues. The predicted protein sequences, spanning 579 and 576 amino acid residues for ZFz8a and ZFz8b, respectively, were highly homologous (78%) to each other and contained an extracellular cysteine-rich domain and seven transmembrane domains that are well conserved in Fz receptor protein members. In comparison with other Fz family members, ZFz8a and ZFz8b showed the highest homology with mouse Fz8 (MFz8), sharing 84 and 76% amino acid identity, respectively. The presence of Zfz8a and Zfz8b transcripts was detected by in situ hybridization in zebrafish embryos from the 512 cell stage, and their appearance in the future dorsal region could be observed before embryos reached the 30% epiboly stage. At shield stage, Zfz8a transcripts were expressed in both epiblast and shield whereas expression of Zfz8b was only detected in the embryonic shield. During gastrula stages, both Zfz8a and Zfz8b transcripts were found in anterior dorsal regions of the involuting mesendoderm (future prechordal plate). By the 2- to 3-somite stage, expression of both Zfz8a and Zfz8b was restricted to the prechordal plate and prospective anterior neurectoderm, although expression of the Zfz8a gene was no longer present in the most anterior portion of the prechordal plate, the polster. In one-eyed pinhead mutant embryos, which lack prechordal plate, both Zfz8a and Zfz8b transcripts were reduced, confirming the prechordal plate specificity of Zfz8a and Zfz8b gene expression. These results provide an additional evidence supporting the role of Wnt signaling in organizer-mediated axial patterning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.