Abstract
The physicochemical properties of Lipu taro starch (LTS), cassava starch (CS) and wheat starch (WS) were analyzed. These starches exhibited a comparable starch content (86 %). However, LTS had a significantly lower amylose content (15.93 %) compared to CS (26.62 %) and WS (33.53 %). Moreover, LTS demonstrated an irregular polygonal cubic morphology with a smaller particle size of 2.55 μm while possessed an A-type crystal structure with high crystallinity at 25.07 %. In contrast, CS and WS had larger particle sizes of 13.33 μm and 16.68 μm, respectively, with lower crystallinities of 22.52 % and 20.33 %. Due to these physicochemical properties, LTS exhibited superior emulsification properties with a higher emulsifying activity index of 8.63 m2/g and an emulsion stability index of 69.18 min, whereas CS and WS had values of 2.35 m2/g and 25.15 min, and 0.37 m2/g and 11.48 min, respectively. LTS also demonstrated enhanced thermal stability, characterized by higher gelatinization temperature (indicated by To, Tp, Tc, and ΔT) and reduced paste viscosity (indicated by PV, TV, FV, SBV, and BDV) compared to CS. However, the mechanical strength of the gel made from LTS (indicated by hardness, adhesiveness, springiness, gumminess, and chewiness) was comparatively inferior to those from CS and WS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.