Abstract

Two polypropylene alloys (Samples A and B), as impact polypropylene (PP) with similar ethylene contents and melt indices but different impact properties at low temperatures, are fractionated into eight fractions using preparative temperature rising elution fractionation. The microstructure of the original samples and their fractions are studied using high-temperature gel permeation chromatography, Fourier transform infrared spectroscopy, 13C nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. The results indicate that the two alloys are mainly composed of four portions: ethylene–propylene random copolymer (EPR), ethylene–propylene segmented copolymer, ethylene–propylene block copolymer, and propylene homopolymer. Sample A contains more EPR and more fractions with higher isotacticity eluted at 120 and 140 °C than Sample B. The difference in the microstructure distributions of both PP alloys results in observable differences in their mechanical properties: Sample A has better impact toughness and possesses higher rigidity than Sample B. Sample A also exhibits better balance between toughness and stiffness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.