Abstract

Gender differences in the hepatic transport of organic anions is well established. Although uptake of many organic anions is greater in females, sodium-dependent taurocholate uptake is greater in hepatocytes from male rats. We examined the hypothesis that endogenous estrogens alter the number of sinusoidal bile acid transporters and/or decrease membrane lipid fluidity. The initial sodium-dependent uptake of [3H]taurocholate was 75% greater in hepatocytes from males than from either intact or oophorectomized females rats. Taurocholate maximal uptake was increased twofold (P < 0.03) without a significant change in the Michaelis-Menten constant. Sinusoidal membrane fractions were isolated from male and female rat livers with equal specific activities and enrichments of Na+-K+-ATPase. Males had a significant (P < 0.05) increase in cholesterol esters and phosphatidylethanolamine-to-phosphatidylcholine ratio. Fluorescence polarization indicated decreased lipid fluidity in females. In females, expression of the sodium-dependent taurocholate peptide (Ntcp) and mRNA were selectively decreased to 46 +/- 9 and 54 +/- 4% (P < 0.01), respectively, and the organic anion transporter peptide (Oatp) and Na+-K+-ATPase alpha-subunit were not significantly different. Nuclear run-on analysis indicated a 47% (P < 0.05) decrease in Ntcp transcription, without a significant change in Oatp. In conclusion, these studies demonstrated that decreased sodium-dependent bile salt uptake in female hepatocytes was due to decreased membrane lipid fluidity and a selective decrease in Ntcp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.