Abstract

The binding of NADH to the dimeric (αβ) and tetrameric ( α 2 β 2) states of human aquomethaemoglobin has been characterized by sedimentation equilibrium studies of the effect of the concentration of free ligand on the macromolecular state of the haemoprotein. Both macromolecular states of aquomethaemoglobin exhibit a single binding site for NADH, which interacts approximately tenfold more strongly (6000 cf. 700 M −1) with the tetramer under the conditions studied (pH 6.0, I 0.10). Because the structure of aquomethaemoglobin resembles that of the deoxy state of haemoglobin, there is a high probability that organic phosphates also bind to dimeric deoxyhaemoglobin, a phenomenon which is not considered in thermodynamic treatments of the interplay between oxygen binding and its allosteric inhibition by 2,3-bisphosphoglycerate. Fortunately, the equilibrium constant for deoxyhaemoglobin self-association is so large that neglect of the interaction between allosteric inhibitor and dimeric haemoglobin is an oversight that should have no deleterious implications in the resultant thermodynamic analysis of the interplay between the preferential interactions of oxygen and organic phosphate with the various macromolecular states of deoxyhaemoglobin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.