Abstract
The effects of thapsigargin (TG), a specific inhibitor of intracellular Ca(2+)-ATPases, were studied on vesicular fragments of sarcoplasmic reticulum (SR) membranes. Inhibition of Ca2+ transport and ATPase activity was observed following stoichiometric titration of the membrane bound enzyme with TG. When Ca2+ binding to the enzyme was measured in the absence of ATP, or when one cycle of Ca(2+)-dependent enzyme phosphorylation by ATP was measured under conditions preventing turnover, protection against TG by Ca2+ was observed. The protection by Ca2+ disappeared if the phosphoenzyme was allowed to undergo turnover, indicating that a state reactive to TG is produced during enzyme turnover, whereby a dead end complex with TG is formed. Enzyme phosphorylation with Pi, ATP synthesis, and Ca2+ efflux by the ATPase in its reverse cycling were also inhibited by TG. However, under selected conditions (millimolar Ca2+ in the lumen of the vesicles, and 20% dimethyl sulfoxide in the medium) TG permitted very low rates of enzyme phosphorylation with Pi and ATP synthesis in the presence of ADP. It is concluded that the mechanism of ATPase inhibition by TG involves mutual exclusion of TG and high affinity binding of external Ca2+, as well as strong (but not total) inhibition of other partial reactions of the ATPase cycle. TG reacts selectively with the state acquired by the ATPase in the absence of Ca2+. This state is obtained either by enzyme exposure to EGTA, or by utilization of ATP and consequent displacement of bound Ca2+ during catalytic turnover.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.