Abstract

Hymenolepis diminuta is spontaneously expelled from mice; concomitant with worm expulsion was protection against colitis induced by dinitrobenzene sulphonic acid (DNBS). Here we examined the immune response mobilized by Balb/c and C57Bl/6 male mice in response to H. diminuta and assessed the requirement for CD4 + cells (predominantly T cells) in worm expulsion and the anti-colitic effect. Wild-type (CD4 +) or CD4 knock-out (CD4 −/−) mice received five H. diminuta cysticercoids and segments of jejunum and mesenteric lymph nodes (MLNs), or spleen, were excised 5, 8 and 1l days later for mRNA analysis and cytokine production, respectively. In separate experiments uninfected and infected mice received DNBS by intra-rectal infusion and indices of inflammation were assessed 3 days later (i.e. 11 days p.i.). Infection of Balb/c mice resulted in a time-dependent increase in intestinal mRNA for Foxp3, a marker of natural regulatory T cells, and markers of alternatively activated macrophages (arginase-1, FIZZ1), while concanavalin-A activation of MLN cells revealed a significant increase in T helper 2 (TH2) type cytokines: IL-4, -5, -9, -10, -13. MLN cells showed a reduced ability to induce Foxp3 expression upon stimulation. CD4 −/− mice did not display this response to infection, but surprisingly did expel H. diminuta. Moreover, DNBS-induced colitis in CD4 −/− mice (wasting, tissue damage, elevated myeloperoxidase) was not reduced by H. diminuta infection, whereas time-matched infected CD4 + C57Bl/6 mice had significantly less DNBS-induced inflammation. In conclusion: (i) in addition to stereotypical TH2 events, H. diminuta-infected Balb/c mice develop a local immuno-regulatory response; and (ii) CD4 + cells are not essential for H. diminuta expulsion from mice but are critical in mediating the anti-colitic effect that accompanies infection in this model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.