Abstract
Studies were conducted to assess the contribution of the hepatic microsomal mixed function oxidase system to a 7.2-fold difference in susceptibility to the lethal effects of endrin between endrin-resistant and -susceptible pine voles, Microtus pinetorum. Evaluations of microsomal enzyme systems were conducted for basal and endrin-treated pine voles of both strains. The microsomal activity of ICR white mice was investigated to provide a species comparison. Maximal microsomal mixed function oxidase activities were determined in in vitro incubations for the model substrates ethylmorphine, aniline, and benzo( a)pyrene. V max values were estimated for the rate of disappearance of benzo( a)pyrene in in vitro incubations. No significant strain differences in basal microsomal enzyme activity were found for the model substrates investigated, although activity was invariably higher in the resistant strain. The concentration of cytochrome P-450 was significantly higher in the resistant vole though actually less than 20% different. The occurrence of significant strain differences in the levels of microsomal enzyme activity induced by endrin were rare. Significant endrin treatment effects on the levels of microsomal enzyme activity for the pine vole were observed but the degree and direction of change depended on the substrate used. A marked species difference in microsomal mixed function oxidase activity was noted between pine voles and white mice. This was particularly evident for endrin-treated animals. The microsomal activity of endrin-treated white mice was greatly induced relative to basal levels. The degree of induction depended on the substrate used. The small strain differences in microsomal enzyme activity for the systems investigated were judged to be insufficient to explain the strain difference in susceptibility to endrin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.