Abstract
Together, the fomA and fomB genes in the fosfomycin biosynthetic gene cluster of Streptomyces wedmorensis confer high-level fosfomycin resistance on Escherichia coli. To elucidate their functions, the fomA and fomB genes were overexpressed in E. coli and the gene products were characterized. The recombinant FomA protein converted fosfomycin to fosfomycin monophosphate, which was inactive on E. coli, in the presence of a magnesium ion and ATP. On the other hand, the recombinant FomB protein did not inactivate fosfomycin. However, a reaction mixture containing FomA and FomB proteins converted fosfomycin to fosfomycin monophosphate and fosfomycin diphosphate in the presence of ATP and a magnesium ion, indicating that FomA and FomB catalyzed phosphorylations of fosfomycin and fosfomycin monophosphate, respectively. These results suggest that the self-resistance mechanism of the fosfomycin-producing organism S. wedmorensis is mono- and diphosphorylation of the phosphonate function of fosfomycin catalyzed by FomA and FomB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.