Abstract

BackgroundThe ability to regenerate body parts is a feature of metazoan organisms and the focus of intense research aiming to understand its basis. A number of mechanisms involved in regeneration, such as proliferation and tissue remodeling, affect whole tissues; however, little is known on how distinctively different constituent cell types respond to the dynamics of regenerating tissues. Preliminary studies suggest that a number of organisms alter neuronal numbers to scale with changes in body size. In some species with the ability of whole-body axis regeneration, it has additionally been observed that regenerates are smaller than their pre-amputated parent, but maintain the correct morphological proportionality, suggesting that scaling of tissue and neuronal numbers also occurs. However, the cell dynamics and responses of neuronal subtypes during nervous system regeneration, scaling, and whole-body axis regeneration are not well understood in any system. The cnidarian sea anemone Nematostella vectensis is capable of whole-body axis regeneration, with a number of observations suggesting the ability to alter its size in response to changes in feeding. We took advantage of Nematostella’s transparent and “simple” body plan and the NvLWamide-like mCherry fluorescent reporter transgenic line to probe the response of neuron populations to variations in body size in vivo in adult animals during body scaling and regeneration.ResultsWe utilized the previously characterized NvLWamide-like::mCherry transgenic reporter line to determine the in vivo response of neuronal subtypes during growth, degrowth, and regeneration. Nematostella alters its size in response to caloric intake, and the nervous system responds by altering neuronal number to scale as the animal changes in size. Neuronal numbers in both the endodermal and ectodermal nerve nets decreased as animals shrunk, increased as they grew, and these changes were reversible. Whole-body axis regeneration resulted in regenerates that were smaller than their pre-amputated size, and the regenerated nerve nets were reduced in neuronal number. Different neuronal subtypes had distinct responses during regeneration, including consistent, not consistent, and conditional increases in number. Conditional responses were regulated, in part, by the size of the remnant fragment and the position of the amputation site. Regenerates and adults with reduced nerve nets displayed normal behaviors, indicating that the nerve net retains functionality as it scales.ConclusionThese data suggest that the Nematostella nerve net is dynamic, capable of scaling with changes in body size, and that neuronal subtypes display differential regenerative responses, which we propose may be linked to the scale state of the regenerating animals.

Highlights

  • The ability to regenerate body parts is a feature of metazoan organisms and the focus of intense research aiming to understand its basis

  • Havrilak et al BMC Biology (2021) 19:104 (Continued from previous page). These data suggest that the Nematostella nerve net is dynamic, capable of scaling with changes in body size, and that neuronal subtypes display differential regenerative responses, which we propose may be linked to the scale state of the regenerating animals

  • NvLWamide-like::mCherry + neural subtypes used in this study We assessed the potential for five previously described neuronal subtypes that express the NvLWamide-like:: mcherry transgene to be used to track neuronal dynamics during nervous system scaling and/or regeneration in this study (Fig. 1a–c) [13]

Read more

Summary

Introduction

The ability to regenerate body parts is a feature of metazoan organisms and the focus of intense research aiming to understand its basis. In some species with the ability of whole-body axis regeneration, it has been observed that regenerates are smaller than their pre-amputated parent, but maintain the correct morphological proportionality, suggesting that scaling of tissue and neuronal numbers occurs. Planarians grow and shrink in response to feeding and starvation, and the number of some neuronal subtypes in fixed planarians positively correlates with length [8,9,10]. This indicates that at least some nervous systems scale as adult body size is altered. As such, investigating the dynamics of neuronal regenerative responses and scaling have been difficult to investigate

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.