Abstract
Mercury porosimetry was used to measure the bulk and real densities, pore volumes and pore size distributions of compacts of hydroxyapatite before and after sintering. The hydroxyapatites were prepared by two different methods and had widely different surface areas. The properties were determined as a function of compaction force and sintering temperature. Densities from porosimetry were in good agreement with geometric densities. A linear relation was found between pore volume and log of the applied force. There was also a linear relationship between bulk volume and pore volume of the compacts. A bimodal pore size distribution was observed for the high surface area hydroxyapatite which disappeared with increasing compaction loads. Pressurization and depressurization measurements indicated that the main body of the pores in the compacts attained a more regular “spherical” shape with increasing compaction force than did the “necks”. The pore volume, percent porosity, and bulk density of the compacts remained unchanged up to 600°C; however, the surface area and the average pore diameter changed at 400°C. The distribution of pores became more uniform, narrower in distribution, and larger in size as the sintering temperature increased. The change in pore area with pore volume indicated that two mechanisms were operating during sintering. The pore area proved to be the most sensitive indicator of changes during sintering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.