Abstract
Al nanoparticles are of significant interest due to their enhanced energetic properties and applicability in optics, biology, and the energy industry. We demonstrate the synthesis of core–shell Al nanoparticles via pulsed-laser-ablation-in-liquid, which reduces oxide formation and increases their resistance to reactive environments. When a bulk Al target was ablated in an organic solvent (acetone), high purity nanoparticles with a high Al content in the core part were generated. The size of the nanoparticles (6–7 nm) was not significantly changed according to the experimental conditions. However, low laser energy intensity is preferable due to less aggregation of nanoparticles and low impurity content. Amorphous and graphite carbon species were found in the coating of the core–shell Al nanoparticles. In addition, we show evidence of enolates or carboxylates in the coating material, as evidenced via energy dispersive spectroscopy and Fourier-transform infrared spectroscopy. Aging experiments in deionized water revealed that the passivated Al nanoparticles could maintain high purity in the core part and high stability in reactive environments such as water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.