Abstract

Circular dichroism spectroscopy has been used to investigate the binding of valinomycin to bacteriorhodopsin in purple membrane suspensions. Addition of valinomycin to purple membrane suspensions obtained from Halobacterium halobium causes the circular dichroism spectrum to shift from an aggregate spectrum to one resembling a monomer spectrum, indicating a loss of chromophore-chromophore interactions. By observing the spectral change upon titration of valinomycin, an apparent dissociation constant of 30-40 μM for valinomycin binding was determined. Kinetics of dark adaptation for valinomycin-treated purple membrane are comparable to those for monomeric bacteriorhodopsin. Centrifugation studies demonstrate that valinomycin-treated purple membrane sediments the same as untreated purple membrane suspensions. These results are consistent with a model in which valinomycin binds specifically to bacteriorhodopsin without disrupting the purple membrane fragments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.