Abstract

Ammonia adsorption microcalorimetry was conducted on various solid acid tungsten/zirconia catalysts prepared by different techniques. The calorimetric data were compared to catalytic test results using n-pentane isomerization as a measure of acid activity. The results show that (1) the co-precipitation method of making the tungsten/zirconia catalyst produces a greater number of acidic sites than impregnating tungsten on hydrous zirconia, resulting in a more active catalyst, and (2) the addition of small amounts of iron to the tungsten/zirconia catalyst increases the acid site strength as determined by ammonia adsorption and improves the paraffin isomerization activity. The calorimetry data indicate that the acid site strength of the tungsten/zirconia materials is similar to or slightly higher than that found in zeolites or sulfated zirconia and is comparable to sulfuric acid. However, the paraffin isomerization activity results suggest that the acid sites of the tungsten/zirconia catalyst should be about four orders of magnitude more active than that of zeolite β on the basis of turnover frequency. Our experimental results indicate a lack of correlation between the heat of ammonia adsorption with catalytic activity. Comparisons of catalytic activity between materials based entirely on acid strength may not be valid, and kinetic probes would be more appropriate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.