Abstract
Tetrodes, consisting of four twisted micro-wires can simultaneously record the number of neurons in the brain. To improve the quality of neuronal activity detection, the tetrode tips should be modified to increase the surface area and lower the impedance properties. In this study, tetrode tips were modified by the electrodeposition of Au nanoparticles (AuNPs) and dextran (Dex) doped poly (3,4-ethylenedioxythiophene) (PEDOT). The electrochemical properties were measured using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). A decrease in the impedance value from 4.3 MΩ to 13 kΩ at 1 kHz was achieved by the modified tetrodes. The cathodic charge storage capacity (CSCC) of AuNPs-PEDOT deposited tetrodes was 4.5 mC/cm2, as determined by CV measurements. The tetrodes that were electroplated with AuNPs and PEDOT exhibited an increased surface area, which reduced the tetrode impedance. In vivo recording in the ventral posterior medial (VPM) nucleus of the thalamus was performed to investigate the single-unit activity in normal rats. To evaluate the recording performance of modified tetrodes, spontaneous spike signals were recorded. The values of the L-ratio, isolation distance and signal-to-noise(SNR) confirmed that electroplating the tetrode surface with AuNPs and PEDOT improved the recording performance, and these parameters could be used to effectively quantify the spikes of each cluster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.