Abstract

Unlike the Lotus leaf, some rose petals (rosea Rehd), scallions, and garlic exhibit superhydrophobicity with high contact angle hysteresis (Feng et al., 2008; Chang et al., 2009; Bhushan and Her, 2010). While a water droplet can easily roll off the surface of a Lotus leaf, it stays pinned to the surface of these leaves. The different behavior of wetting between the Lotus leaf and the rose petal can be explained by different designs in the surface hierarchical micro- and nanostructure. Since the rose petal’s microstructure, possibly nanostructure, has a larger pitch value and lower height than the Lotus leaf, the liquid is allowed to impregnate between the microstructure and partially penetrates into the nanostructure, which increases the wetted surface area. As a result, contact angle hysteresis increases with increasing wetted surface area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.