Abstract

Abstract Residual stress plays an important part in fabricating commercial aero engine Inconel 718 components for their fatigue properties, reliability and durability. Due to the limitation of Chinese neutron diffraction instrument and lack of test practice and specifications, there is little systematic research on the residual stress of forged compressor disc. X-ray diffraction and neutron diffraction methods were used to measure the residual stress of Inconel 718 forged discs at the surface and in the interior, respectively. Scanning electron microscope and transmission electron microscope were used to characterize the microstructural features. The residual stress state at the disc is in near-surface compression, balanced by tension within the disc core. However, the surface residual stress of disc depends more on the rough machining than on the forging process. Also, the dislocation densities increase with decreasing distance to the surfaces of disc, and the residual stress accelerates dislocation generation and dynamic recrystallization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.