Abstract

Pt nanoparticles supported on carbon monofluoride (CFx), synthesized from H2PtCl6 using NaHB4 as a reducing agent has been investigated as a cathode electrocatalyst in fuel cells. Surface characterization, performed by transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD), shows a homogeneous distribution and high dispersion of metal particles. Kinetic parameters for the electrocatalyst are also obtained from the steady state measurements using a rotating disk electrode (RDE) in 0.5 M H2SO4 solution. Analysis by Koutecky–Levich equation indicates an overall 4 e− oxygen reduction reaction (ORR). Evaluation of the catalyst in single cell membrane electrode assemblies (MEAs) for proton exchange membrane based Direct Methanol Fuel Cell (DMFC) and H2 Fuel Cell at different temperatures and flows of O2 and Air are shown and compared against commercial Pt/C as the cathode electrocatalyst. Evaluation of Pt/CFx in H2 fed fuel cells shows a comparable performance against a commercial catalyst having a higher platinum loading. However, in direct methanol fuel cell cathodes, an improved performance is observed at low O2 and air flows showing up to 60–70% increase in the peak power density at very low flows (60 mL min−1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.